CellSolutions 30

Operator's Manual

C€ IVD

Document Number: CS-OP-30US

Rev. 09

Issue Date: January 30, 2024

Copyright 2015 - CellSolutions, LLC. All rights reserved. No part of this manual or the described software may be copied, reproduced, translated or reduced to any electronic medium or machine-readable form without the prior written consent of CellSolutions, LLC., except that you may make one copy of the program and related files for back-up purposes.

Although this manual was prepared with every precaution to ensure accuracy, CellSolutions assume no liability for errors or omission, nor for danger resulting from application or use of this information.

CellSolutions GmbH Wüllener Straße 7 48691 Vreden, Germany

CellSolutions, LLC. 1100 Revolution Mill Drive, Suite 1 Greensboro, NC 27405, USA

Table of Contents

Preface		V
Info	ormation about this Manual	V
Ge	neral Information	V
Wa	rranty and Contact Information	V
Section 1.0	Introduction	1-1
1.1	Intended Use	1-1
1.2	Requirements	1-1
1.3	Hazards and Warnings	1-1
Section 2.0	Specifications and Installation	2-1
2.1	Equipment Specifications	2-1
2.2	Recommended Installation Space	2-2
2.3	Installation and Setup	2-3
2.4	Power the Unit	2-3
2.5	Aligning Unit for Operation	2-4
2.6	Transport, Storage, Disposal	2-4
Section 3.0	Material Requirements	3-1
	Reagents	3-1
3.2	Re-usable Materials	3-1
3.3	Consumable Materials	3-1
Section 4.0	Operation Overview	4-1
4.1	Specimen Identification	4-1
4.2	Slide Presentation and Barcoding	4-1
4.3	Specimen Volume Detection	4-1
4.4	Specimen Dilution	4-1
	Specimen Mixing and Transfer	4-2
4.6	Specimen Application to Slide	4-2
4.7	Loading Slide into Staining Rack	4-2
4.8	Specimen Drying	4-2
	Sample Preparation	5-1
	Sample Collection	5-1
	Sample Identification and Tracking	5-1
	Sample Transfer	5-1
5.4	Centrifugation	5-1
5.5	Decanting	5-2

5.6	Vortexing	5-5
Section 6.0	Operating Procedure	6-1
6.1	Software Operator Interface	6-1
6.2	Operating Modes	6-1
6.3	System Initialization	6-3
6.4	Startup Checks	6-3
6.5	Processing Samples	6-9
6.6	System Utilities	6-12
6.7	System Shutdown	6-15
Section 7.0	Maintenance	7-1
7.1	Daily Maintenance	7-1
7.2	Weekly Maintenance	7-1
7.3	Semi-Annual Maintenance	7-2
Section 8.0	Troubleshooting	8-1
Appendix A	Glossary of Terms	A-1
Appendix B	Glossary of Symbols	B-1
Appendix C	Microscope Slide Printer	C-1
Index		

PREFACE

Information About This Manual

This manual provides information on the installation, operation and maintenance of the CellSolutions 30 System and its software.

Throughout the manual the following three notices are used to highlight important information:

WARNING: INDICATES THE POSSIBILITY OF SEVERE PERSONAL INJURY OR LOSS OF LIFE IF INSTRUCTIONS ARE NOT FOLLOWED.

Caution: Indicates the possibility of severe equipment damage if instructions are not followed.

Note: Indicates useful information.

General Information

This device is intended for the preparation of thin-layer cell presentations on microscope slides for subsequent staining and evaluation. All users of the device should be appropriately trained on the uses of the device and have an understanding of the overall slide preparation and screening process.

WARRANTY INFORMATION

The CellSolutions 30 has a one-year warranty from the date of sale. For technical support or repair information contact your designated local representative or CellSolutions.

CellSolutions 1100 Revolution Mill Drive Greensboro, NC 27405, USA +1-336-510-1120

1.0 INTRODUCTION

1.1 Intended Use

The CellSolutions 30 automates certain steps in the process of preparing a microscope slide with a thin layer of cells for microscopic visual evaluation. The unit takes as input, preserved cell samples that have already been concentrated by centrifugation. The system then outputs optimized samples of approximately the same cellularity onto microscope slides that are ready for staining.

1.2 Requirements

The device is designed to use the specific reagents and consumable materials identified in this manual (i.e. reagents, disposable tubes, automated pipette tips, stain shield labels). Use of other reagents and materials may damage the device and cause incorrect results as well as render the warranty invalid.

The samples should be collected by experienced professionals using an acceptable cervical sampling device that allows detachment or thorough rinsing of the brush or spatula head in the preservative vials. The vials used for collection are BestPrep® General Cytology Preservative Vials (C-101-500).

1.3 Hazards and Warnings

1.3.1 Chemical Hazards

The fluids processed by the device are biological samples that may contain infectious material.

WARNING: SPECIMENS MAY CONTAIN INFECTIOUS MATERIAL. WEAR PROTECTIVE CLOTHING AND AVOID CONTACT WITH SPECIMEN.

WARNING: IF A SPILL OCCURS, WIPE CLEAN THE AFFECTED AREA USING APPROPRIATE CLEANING MATERIAL FOR THE TYPE OF SPILL. POTENTIAL BIOHAZARD CLEAN UP MAY USE A TOWEL LIGHTLY DAMPENED WITH A 10% BLEACH SOLUTION.

1.3.2 Mechanical Hazards

The CellSolutions 30 is controlled by a computer in communication with sensors and motors that when properly operated should prevent any accidental harm to the operator. The operator should take reasonable care not to interfere with moving parts of the system while in operation.

1.3.3 Electrical Hazards

The CellSolutions 30 has 2 items that are separately plugged into an alternating current supply. The 2 items are a computer and the CellSolutions 30 Processing Platform. Each item operates on 100 to 240 volts and 50 to 60 Hz. Usual electrical precautions should be observed.

2.0 SPECIFICATIONS AND INSTALLATION

2.1 Equipment Specifications

The system comes with a CellSolutions 30 processing platform, a computer and a Smart Card reader. A separate centrifuge and vortex mixer that is not provided with the system is needed to perform the overall process. The centrifuge and vortex mixer listed below are suggested units, however, others may be used as long as they can achieve the required G-forces and mixing requirements of the process. The physical dimensions and specifications for each unit are as follows:

2.1.1 CellSolutions 30:

Dimensions: Width: 430 mm (17 inches)

Depth: 580 mm (23 inches) Height: 740 mm (29 inches)

Power: Configuration 1: 120VAC, 60Hz

• CellSolutions 30 platform – 6.2 amps

Computer – 0.5 amps

Configuration 2: 240VAC, 50Hz

CellSolutions 30 platform – 3.1 amps

Computer – 1 amp

(Note: Operation at 100VAC to 240VAC is acceptable.)

Weight: 41 kg (90 lbs)

Operating Temperature: 5C° to 35°C (41° to 95°F)

Relative Humidity: 30 to 80% RH, non-condensing

Throughput: 30 slides per hour (may vary based on sample size)

Barcode: Code 128, DataMatrix, PDF417 (Other formats available

Contact Authorized Representative)

Remote Access: Remote Troubleshooting Support (Contact

Authorized Representative for availability)

Computer: System runs on a computer with a Windows 7 or later

operating system that is connected with a USB cable.

2.1.2 Centrifuge:

A centrifuge is required but not provided. The following centrifuge is suggested as being one that is compatible with the CellSolutions 30 system:

Manufacturer: Drucker

Model: Horizon 24 Flex with six-bucket rotor

Dimensions: Width: 380 mm (15 inches)

Depth: 430 mm (17 inches) Height: 230 mm (9 inches)

Power: Configuration 1: 120VAC, 60 Hz, 1 amp

Configuration 2: 240VAC, 50 Hz, 0.5 amps

Weight: 17 kg (37 lbs)

Capacity: 24 tubes (6 position rotor with a 4-tube

rack in each position)

2.1.3 Vortexer:

A vortex mixer is required but not provided.

A standard laboratory vortex mixer with comparable specifications to the unit noted below is acceptable.

Manufacturer: Thermolyne

Model: Maxi Mix II, No. M37615

Dimensions: Width: 130 mm (5 inches)

Depth: 200 mm (8 inches) Height: 150 mm (6 inches)

Weight: 3 kg (6 lbs)

2.2 Recommended Installation Space

In addition to the bench top space required to hold the CellSolutions 30 platform, space is also needed for the computer and for handling tubes, racks, and slides.

Recommended Bench Space for CellSolutions 30:

Width: 1200 mm (48 inches) Depth: 750 mm (30 inches)

Height: Approximately 800 mm (32 inches)

Recommended Bench Space for centrifuge, vortex mixer, and handling:

Width: 1200 mm (48 inches) Depth: 750 mm (30 inches)

Height: Not critical.

The above dimensions are recommended values. Each installation site's space will vary based on space constraints and usage volumes.

2.3 Installation and Setup

The CellSolutions 30 should be placed on a sturdy and stable table that does not tilt or flex.

The unit can be placed with the back toward a wall so long as there is at least 50 mm (2 inches) of space between the unit's back and the wall. This space provides ventilation for unit cooling.

Once the unit is in its final place on the table, the 4 machine feet should be adjusted to level the machine. The feet should be adjusted until the bubble in the level attached to the rotary table is centered. All 4 feet must be adjusted so they are touching the table and the unit does not tilt back and forth on two feet.

Note: It is critical that the machine be completely level so that the cell suspension deposited on the slide does not run off the slide or pool toward one side of the deposit area. If the solution pools to one side, that side will have a higher cell concentration than the rest of the slide.

Note: Any time the machine is moved, the level should be re-checked and adjusted if necessary.

The tubing to the pump should be placed in a reservoir bottle or container. The container should be filled with a 50% ethanol solution.

The tubing that is connected to the priming station standpipe should be routed to a discharge collection container or to a drain.

During operation, the unit ejects used pipette tips into the detachable tip chute toward the back left of the instrument. The detachable tip chute is held in place with a threaded thumb screw so the chute can be easily removed for cleaning with a dilute bleach solution. A small metal pin is on the top of the tip chute for attaching a tip disposal bag such as a Whitney Products Safe-Keeper Container (Item BH2005). Other suitable leak proof tip disposal containers may also be used and are the option of the user.

2.4 Powering the Unit

The CellSolutions 30 processing platform and the computer have separate power cords. Each of these components can be powered with 100 to 240 VAC and 50 to 60 Hz. Check that the available power is correct before plugging the components into the wall socket.

The computer is connected to the processing platform with a USB cable. The cable should be connected to the USB connection marked on the computer and the square USB connection under the air inlet on the back of the machine.

The Smart Card reader is plugged into a USB port on the computer.

After all the connections noted above are made, the computer and the processing platform can be turned on in any order. Once the computer is booted up, the CellSolutions 30 software can be started by double clicking the icon on the computer desktop.

2.5 Aligning Unit for Operation

After shipping or moving the CellSolutions 30 the mechanical alignment of the system may have slightly changed. All of the System Checks listed in the Utilities Menu should be performed during installation and after moving the unit. The System Checks verify proper alignment and can be used to make some mechanical adjustments (i.e. leveling the unit).

The unit has an initialization file that specifies motor alignment values (i.e. location of tip rack or sample tubes) and calibration information (i.e. fluid pump calibration offsets). If the System Checks indicate that adjustments are needed to the initialization file, trained maintenance personnel should be contacted.

2.6 Transport, Storage, Disposal

Prior to removing the unit from service for decommissioning, storage or transport, the unit must be cleaned/decontaminated. This is done by wiping all external surface of the unit that may have come in contact with biological samples. The surfaces should be wiped with a towel that is lightly dampened with a 10% bleach solution. Do not spray cleaning solution directly on the unit.

The system should have fluids purged from the pump and tubing prior to removing unit from service. This can be accomplished by removing the pump inlet tube from the diluent reservoir and using the Prime Fluid Lines option in the Utilities Menu (see section 6.5) to pump liquids out of the pump and tubing. At least 5 ml of air should be pumped through the system.

If the equipment is to be permanently removed at the end of its service life cycle, it should be handled as Waste Electrical and Electronic Equipment (WEEE). The equipment, including accessories, does not belong in your regular waste. For disposal of the equipment in the European Economic Area (EEA) or other areas with specified WEEE regulations, contact your CellSolutions Representative for disposal guidance or dispose of in accordance with your local regulations. The unit must first be cleaned and decontaminated as noted above.

3.0 MATERIAL REQUIREMENTS

3.1 Reagents

The device uses 2 different fluids:

- 50% ethanol solution
- GluCyte™ Cell Adherent: Part Number: GC 100

The amount of diluent used varies per sample with typical amounts between 100ul to 1000ul per sample. The amount of GluCyte™ used is about 200ul per sample.

3.2 Re-usable Materials

The sample racks provided with the machine hold 20 sample tubes along with 20 disposable tubes that are used during processing.

3.3 Consumable Materials

The device uses one of each of the items below for each sample when running in Single Slide Mode. These items are either supplied in the Kit GCK 500-A that includes GluCyte™, or purchased separately where mandated.

- BestPrep® General Cytology Preservative Kits (No. C-101-500) This item is not supplied in the Kit GCK 500-A but is needed for the procedure. Please order this item separately using Catalog No. C-101-500.
- Glass Slides (No. GCK D4) Supplied in Kit GCK 500-A
- Disposable Centrifuge Tubes: (No. GCK D1) Supplied in Kit GCK 500-A
- Disposable Tubes: 13x75mm, 5ml, round bottom tubes (No. 55.475) Supplied in Kit GCK 500-A
- Automated Pipette Tips: (No. GCK D3) Supplied in Kit GCK 500-A (One Pipette Tip is used for each sample plus one additional Pipette Tip is used at the beginning of each run.)

When running in Dual-Slide Mode or Triple-Slide Mode, two or three Glass Slides are used for each sample.

The system also uses a specialized ribbon for printing on the glass slides. One roll of ribbon will print approximately 8000 slides. The ribbon is not supplied as part of the Kit and should be purchased separately using Catalog No. GCK D7.

4.0 OPERATION OVERVIEW

The objective of the CellSolutions 30 is to produce barcoded slides that are ready to be stained. The slides prepared will have a thin layer of cells adhering in a defined area of the slide. The cell deposition area has a controlled cellularity (number of cells per square millimeter) that is readily suitable for evaluation either manually, using a microscope or a suitable microscopic imaging system.

When running in Normal Single-Slide Mode the operation can be broken down into the steps listed below.

4.1 Specimen Identification

A barcode scanner is used to read labels on the side of the sample tubes. The system uses a mirror that allows the scanner to only read one tube's barcode at a time. The barcodes on adjacent tubes are not visible to the scanner so a mix-up of samples is not possible.

4.2 Slide Presentation and Barcoding

The system feeds microscope slides from the bottom of a stack of slides onto a processing platform. After the barcode on the tube is read a matching barcode is printed on the microscope slide.

4.3 Specimen Volume Detection

To achieve a relatively consistent cellularity on the final slide, the device must first get an approximation of how many cells there are in the original specimen tube. The device uses an air pressure sensor in the pipetting system that can detect when a pipette tip contacts a liquid level surface. Once the elevation of the pelletized sample inside the tube is found, the unit can determine the volume of the pellet.

4.4 Specimen Dilution

The machine dilutes the sample in two different tubes (primary and secondary tubes) and with two different fluids (diluent and $GluCyte^{TM}$) to achieve desired cellular concentration prior to dispensing to the microscope slide. The amount of dilution is based on the number of cells in the original sample. The system uses the volume of the pellet to approximate the number of cells.

Each sample is diluted differently based on the number of cells in that sample. Normally, the cell pellet is first diluted with 50% ethanol and then the diluted sample is further diluted by mixing with $GluCyte^{TM}$. If there is an extremely small sample, the first dilution step is skipped and the sample is just diluted with $GluCyte^{TM}$.

4.5 Specimen Mixing and Transfer

The device uses a disposable pipette tip and a pipette pump to both mix and transfer samples. The mixing is done by aspirating and dispensing the fluid multiple times to ensure the cell suspension is a homogeneous mixture within the diluent or $GluCyte^{TM}$.

4.6 Specimen Application to Slide

The device aspirates a specific volume of the mixed cell and GluCyte™ suspension and transfers it to the slide. Once the solution is dispensed to the slide it is inscribed into a defined pattern by bringing the pipette tip near the surface and spreading it into a rectangular pattern. The robot arm ejects the pipette tip into a collection container after the cell mixture is inscribed on the slide.

4.7 Loading Slide into Staining Rack

The rack used to collect slides after the sample has been applied is a 20-position rack that can be used in an automated or manual staining system. The device pushes a slide into the rack as the processing is completed. Each of the 20 positions in the slide rack corresponds to a specific location in the 20-position tube rack. After all the tubes in the tube rack have been processed and the slides have been loaded into the slide rack, the slide rack rotates to the drying station and an empty rack rotates to the load position in preparation for the next rack of tubes.

4.8 Specimen Drying

After the specimen is applied to the slide, the slide must remain in a horizontal orientation until the solution is dry. This drying time is greatly influenced by the ambient conditions. In order to allow drying to proceed in a reasonable time frame, the device blows air over the slides while they are in the drying station.

5.0 SAMPLE PREPARATION

5.1 Sample Collection

Using approved detachable cell sampling brushes or a combination of detachable endocervical brushes and detachable spatulas, the samples are collected following the manufacturers' recommendations for the specific devices. The detached portion of the sampling devices with the collected cells is placed into the BestPrep® General Cytology Preservative Vials. The cap is then screwed onto the vial until firmly sealed so as to prevent any leakage.

5.2 Sample Identification and Tracking

Each lab may have different protocols for sample identification. The following is provided as one method of sample handling through the CellSolutions 30 process. (If a different method is used, the lab should ensure at a minimum the sample produced by the CellSolutions 30 unit can be positively traced back to the original sample.)

- 5.2.1 Assign the original sample identifying information to a tracking number that will be used throughout the process. This tracking number appears on a set of 3 identical barcode labels that are pre-printed or are printed on demand.
- 5.2.2 Place one of the three barcode labels with the tracking number on the patient requisition form.
- 5.2.3 Place another of the three barcode labels on the original sample container.
- 5.2.4 Place the remaining barcode on the primary centrifuge tube into which the sample will be transferred.

NOTE: It is the responsibility of the lab to ensure the sample tracking method used is in accordance with all applicable standards.

5.3 Sample Transfer

- Verify the tracking number on the original sample vial matches the number on the disposable centrifuge tube into which the sample will be transferred.
- Vortex the vial for 5 to 10 seconds to thoroughly mix and free cells from the collection device.
- Open the original container and pour the sample into the disposable centrifuge tube while ensuring the collection device is not transferred to the disposable centrifuge tube.

5.4 Centrifugation

The sample should be centrifuged under the following conditions to create an intact pellet of cells in the bottom of the tube.:

- G-force = 800 X G
- Time = 10 minutes

The recommended centrifuge for the CellSolutions process is the Drucker Model 755 VES with a six-bucket rotor. The settings on this centrifuge to achieve proper results are:

Speed: 2150 rpm

Time: 10 minutes

If a different centrifuge is used, consult the applicable documentation to determine the settings required to achieve a G-force of 800.

5.5 Decanting

Samples can either be decanted from the primary tubes individually or in groups of four while in the centrifuge racks. The method used is subject to an individual lab's needs and requirements. One of the following methods should be used to decant the samples into a suitable disposal basin or container approved for accepting biological samples.

Note: Proper decanting is very important. The unit measures the volume in the tube after decanting to get an approximation of the cell pellet size. If extra fluid is left on the pellet after decanting, the unit may over-estimate the size of the cell pellet.

5.5.1 Decanting individual tubes

a. Invert the tube in one quick smooth motion to an angle of approximately 80 degrees so that the fluid drains down one side of the tube.

- b. Hold the tube at approximately 80 degrees for approximately 5 seconds.
- c. While holding the tube in this inverted orientation move it to a location where it can be blotted onto a paper towel. The blotting is used to wick away the fluid that collects on the rim of the tube.

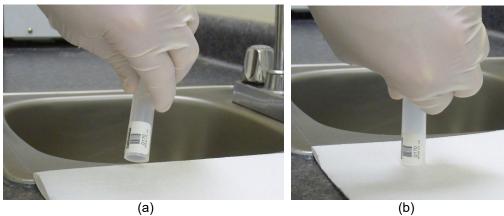


Figure 5-2

Note: The tube should <u>not</u> be turned upright after pouring into the basin and before blotting. Turning upright would allow drops of fluid on the rim to go back down into the tube. The level detection system of the device relies on proper decanting and removal of as much fluid from the pellet as possible.

- d. Once the tube is in contact with the paper towel, the tube can be completely inverted to a vertical position so the entire rim of the tube is contacting the paper towel. Hold the tube in this position for about 2 seconds so the paper towel absorbs the initial fluid collected around the tube rim.
- e. While keeping the tube inverted, move the tube to a clean, unused part of the paper towel and allow the tube to remain inverted on the towel for between 60 to 120 seconds.
- f. Blot the tube by slightly lifting the tube, moving it to a clean, unused section of the paper towel and then momentarily touching the entire rim of the tube to the towel. Blot multiple times until no fluid appears on the towel.

Note: When blotting, the tube should be lightly touched to the towel. Do not tap the tube as that could cause the cell pellet to dislodge.

- g. After blotting, the tube can be turned upright.
- h. The process can be repeated for subsequent tubes while ensuring that tubes are blotted in areas of the paper towel that have not been previously used.

5.5.2 Decanting tubes in racks

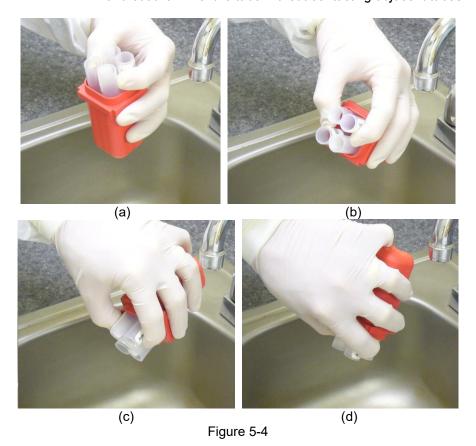

a. With tubes in the centrifuge rack, grasp the rack and tubes in such a way so your thumb and index finger are holding all four tubes while the rack is being held by your remaining fingers (see figure below). The index finger and thumb should separate tubes into groups of two as shown below so the tubes do not contact each other.

Figure 5-3

b. In one quick smooth motion invert the four tubes to an approximate angle of 80 degrees over a basin so that the separated tubes are above each other (see figure below).

Note: Inverting the tubes quickly allows the tubes to be inverted before the fluid reaches the rims of the tubes and holding the tubes at approximately 80 degrees as shown allows the fluid to drain down one side of the tube and out the rim of the tube without contacting adjacent tubes.

- c. Hold the tube inverted at the 80-degree angle for about 5 seconds.
- d. While holding the tubes in this inverted orientation move them to a location where they can be blotted onto a paper towel. The blotting is used to wick away the fluid that collects on the rim of the tube.

Note: The tube should <u>not</u> be turned upright after pouring into the basin and before blotting. Turning upright may allow drops of fluid on the rim to either go back down into the tube or potentially onto an adjacent tube. The level detection system of the device relies on proper decanting and removal of as much fluid from the pellet as possible.

- e. Allow the lower two tubes to contact the paper towel first. Then tilt the rack so the tubes are vertical and the rims of all the tubes are contacting the paper towel. Hold the tubes in this position for about 2 seconds so the paper towel absorbs the initial fluid collected around the tube rim.
- f. While keeping the tubes inverted, move the tubes to a clean, unused part of the paper towel and allow the tubes to remain inverted on the towel for between 60 to 120 seconds.

Figure 5-5

g. Blot the tubes by slightly lifting the tubes, moving them to a clean, unused section of the paper towel and then momentarily touching the rims of each tube to the towel. Ensure the rims of all 4 tubes contact the towel. Blot multiple times until no fluid appears on the towel.

Note: When blotting, the tubes should be lightly touched to the towel. Do not tap the tubes as that could cause the cell pellet to dislodge.

- h. After blotting, turn the tubes upright.
- The process can be repeated for subsequent tubes while ensuring that tubes are blotted in areas of the paper towel that have not been previously used.

5.6 Vortexing

The samples should be vortexed to break up the cell pellet after decanting. Each individual tube can be vortexed or the 4 tubes in one centrifuge rack can be vortexed together. Adequate mixing can be obtained by holding the rack or individual tube on the vortexer for 4 to 6 seconds then lifting it off the vortexer for one second. This brief on-off vortex sequence should be repeated two additional times.

Note: If vortexing in the rack, the tubes should be squeezed tight against the sides of the rack so that the vortexer's vibrations are adequately transferred through the rack to the tubes. This can be done by tightly holding the tubes and racks as described above for decanting.

Figure 5-6

6.0 OPERATING PROCEDURE

6.1 Software Operator Interface

The following screen shot shows the CellSolutions 30 main interface window that is displayed upon startup.

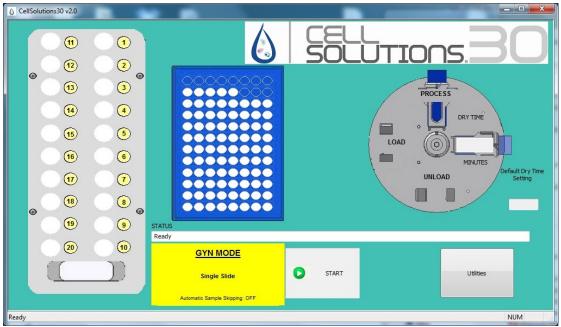


Figure 6-1

This screen is the starting point for the process and also provides the status of the process while samples are being run. The functionality of each button is covered in the following discussion of machine operation.

6.2 Operating Modes

There are different Operating Modes that change the way the system operates. The modes are displayed at the bottom center of the main software screen. When the software is started it automatically starts in the default mode. The default modes can be changed in the Setup and Calibration Menu by accessing System Utilities. Changing the defaults requires a Level 2 PIN.

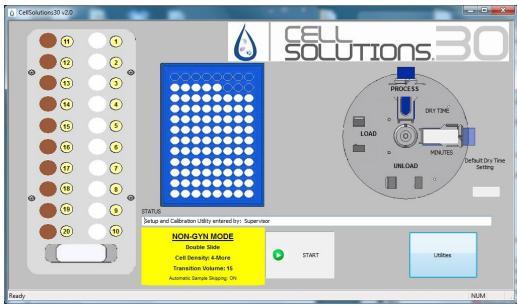


Figure 6-2

The system will use the stored default modes for each new run of samples. However, the operator can change the modes of operation for an individual run at the start of the run. When the next run is started, the system will revert back to the default modes.

6.2.1 Number of Slides per Sample

In **Single-Slide Mode** the system makes one microscope slide for each sample tube. In this mode, when 20 sample tubes are loaded, the system will make 20 corresponding microscope slides.

In **Double-Slide Mode** the system makes two slides from each sample tube. The system can only be loaded with 10 or fewer sample tubes. If 10 tubes are loaded, the system will fill the Slide Staining Rack with 20 slides. Slide positions 1 and 2 will contain slides with sample from the first tube. Slide positions 3 and 4 will contain slides with sample from the second tube. The remaining positions will be filled with this same pattern.

In **Triple-Slide Mode** the system makes three slides from each sample tube. The system can only be loaded with 6 or fewer sample tubes. If 6 tubes are loaded, the system will fill the Slide Staining Rack with 18 slides. Slide positions 1, 2, and 3 will contain slides with sample from the first tube. Slide positions 4, 5, and 6 will contain slides with sample from the second tube. The remaining positions will be filled with this same pattern.

6.2.2 GYN and Non-GYN Mode

The cell pellet in the primary tube after decanting can have slightly different characteristics depending on whether the sample is a gynecological (GYN) or non-gynecological (Non-GYN) sample. To accommodate these differences the system uses different diluent and $GluCyte^{TM}$ dilution volumes for **GYN Mode** and **Non-GYN Mode**.

6.2.3 Skipping Samples During a Run

Turning the **Automatic Sample Skipping to OFF** will cause the system to display a warning window and pause processing whenever there is a condition that impacts any sample. The operator needs to take action before processing will resume.

Turning the **Automatic Sample Skipping to ON** will display a warning window and delay processing for a few seconds, but if the operator does not click a button, the window will disappear, the current sample will be skipped, and processing will continue. This will only occur if the sample can be skipped without impacting processing of remaining samples.

If a sample is skipped, the sample rack graphic for that position will be turned to red. A window will also be displayed at the end of the run that alerts the operator that the sample was not processed.

Warnings that can be automatically skipped include things like a missing or unreadable tube barcode or a sample that is too large to be effectively processed. Warnings that cannot be skipped and always require operator action include things like running out of pipette tips, GluCyte™, or microscope slides.

6.3 System Initialization

Pressing the Start Button allows the system to initialize all the motors in the system. During this process all the motors will drive to "Home" positions. After Homing, the unit will perform several moves to verify that each motor is communicating and operating correctly. The unit will also prime the dispense pump by dispensing enough diluent to fill the tubing from the diluent container to the dispense nozzle.

If the operator selects to run more samples after a rack of samples has been processed, the initialization and priming will not be done again.

6.4 Startup Checks

Prior to running a rack of samples, the system automatically performs several checks and prompts the operator to perform several steps. The system first checks to see if there is a valid CellSolutions Smart Card inserted in the Smart Card Reader. If a valid card is inserted, the Startup Check List window will appear.

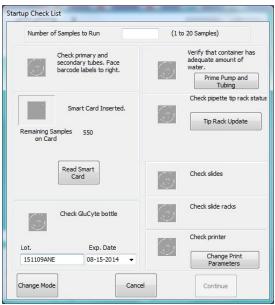


Figure 6-3

The operator should enter information or check off on the screen that the system status was verified for each item described below.

6.4.1 Number of Samples to Run

Once the operator enters the number of samples to run, the screen updates and the checkboxes become active as shown in the following screen shot. The "x" icon turns to a checkmark (\checkmark) when clicked and indicates that this item has been checked by the operator.

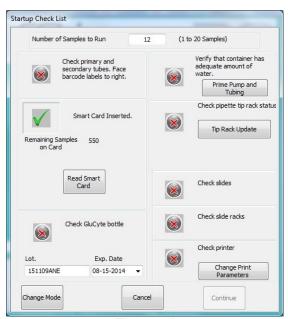


Figure 6-4

6.4.2 Tubes Loaded

The operator should verify the sample rack is loaded with primary and secondary tubes. The system always starts with the tube in the back-right corner of the rack and proceeds through the samples as numbered in the graphic on the main screen. If fewer than 20 samples are to be run, the samples should be loaded in the lowest numbered positions. The barcodes on the primary tube should also be turned to the right so they can be scanned by the barcode reader.

Figure 6-5

6.4.3 Smart Card

A Smart Card is provided with each sample kit. The card is a key that activates the system and helps the system generate quality results by ensuring the system is only operated with the GluCyte[™] and disposables supplied with a valid Smart Card. Each card is encoded with information including a sample counter. This counter is initialized with the number of samples supplied with the kit and counts down as samples are completed.

If a valid Smart Card is inserted, the Startup Check List window will display the number of samples remaining on the card. The number of samples to run entered by the operator must be equal to or less than the number of samples remaining on the Smart Card.

If the number of samples to run is less than the number of samples remaining on the Smart Card, the checkbox will be automatically checked off. If the number of samples entered is more than the samples remaining on the Smart Card, a message is displayed that alerts the operator that there are not enough samples remaining on the Smart Card.

6.4.4 GluCyte™ Bottle Loaded

The operator should remove the cap from a bottle of GluCyte™ and place the bottle on the machine as show below. The GluCyte™ Lot Number and Expiration Date shown on the bottle should be recorded in the Startup Check List window. The operator should also verify that the GluCyte™ being used has not expired.

Figure 6-6

6.4.5 Diluent Reservoir and Priming Discharge Container Check

The diluent reservoir should be checked to ensure there is adequate diluent for operation. The fluid line should be primed if the bottle was changed or anything else has occurred which may have introduced air into the fluid line. To prime the system, press the Prime Pump and Tubing button after ensuring the intake line is in the bottle.

If the discharge tubing for priming fluid drains to a container, verify the container is not full. If a collection bottle is not used, ensure the tubing is routed to a drain.

6.4.6 Tip Rack and Used Tip Collection Check

The unit keeps track of the tips that it uses from the tip rack. The status of the tip rack is also maintained while the unit is turned off. An image of the tip rack with the remaining tips is displayed on the operator interface.

The operator should verify the physical status of the tip rack matches the status the device has displayed in the window. If needed the operator should press the Tip Rack Update button to change the tips displayed on the operator interface. The Tip Update window allows individual tips to be added or removed and allows all 96 tips to be added or removed.

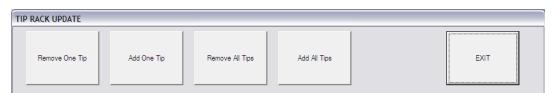


Figure 6-7

If the number of samples selected for a run is more than the available pipette tips, the unit will allow the run to proceed. However, a note will be displayed as shown in the window below. This will let the operator know that the unit will run out of tips during the run and processing will be interrupted for the operator to load more tips. In the example shown below, the number of samples to run is 15,

but there are only 10 tips in the tip rack. If the operator would like the process to complete without intervention, a new tip rack should be loaded and the Tip Rack Update Button should be pressed to update the system.

Figure 6-8

Note that the unit uses one pipette tip for each sample plus one tip for transferring $GluCyte^{TM}$ to all the secondary tubes at the beginning of each run. For example, if 15 samples are to be processed, the unit will use 16 tips.

The container used to collect used pipette tips should be checked to ensure it has the capacity to hold the number of tips that will be used during the run.

6.4.7 Microscope Slides Loaded

Microscope slides should be loaded on the slide platform with the frosted area of the slide facing up and toward the back of the unit.

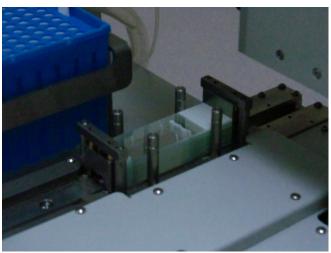


Figure 6-9

6.4.8 Staining Rack Loaded

An empty staining rack should be placed in the processing location of the rotary table. The rack needs to be fully seated in the holder with the bottom of the tray contacting the rotary table disk. A second empty rack can be placed in the left position in preparation for the next set of samples.

Figure 6-10

6.4.9 Printer Ribbon Loaded

The ribbon in the slide printing mechanism should be checked to make sure it does not have wrinkles and is properly fed past the print head. See Appendix C for information on loading printer ribbon in the print mechanism.

The format of the information printed on the slide can be changed by the operator for the current run by pressing the Change Print Format button. Any changes made from this menu are temporary and only in effect for the current run of samples. The values will return to the default values the next time the system is started. See Appendix C for addition information.

6.4.10 Test Mode

The software has a feature call "Test Mode" that allows the unit run one sample without a Smart Card.

To run in Test Mode a new run can be started without a Smart Card inserted. The system will display the following message.

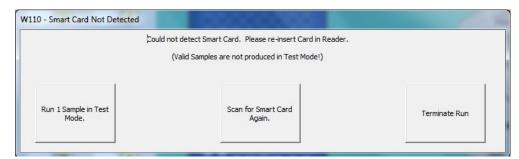


Figure 6-11

6.4.11 Operator Initials Entry after Startup Checks

Once all the checks are completed the Continue button will become active. Pressing the Continue button will bring up a number pad window for entering the PIN (Personal Identification Number) of the operator who completed the Startup Checklist.

6.5 Processing Samples

6.5.1 Normal Operation

After the Startup Checklist is completed and operator's PIN is entered, the unit will run the samples without any further operator input unless one of the following conditions is encountered:

- The Pause or Stop button is pressed.
- The pipette tip rack is empty.
- The microscope slide stack is empty.
- A staining rack is not loaded.
- The barcode label is not read on the tubes or slides.
- There is a warning or error alert. Refer to the Troubleshooting section of this manual for information about errors and warnings.

The unit operates with two sub-systems. The first sub-system is the upper robot arm that handles pipetting and barcode reading functions. The second sub-system is the slide handling that handles slide labeling, slide feeding, and slide rack rotation. The two sub-systems run in parallel until they require a "hand-shake" with the other sub-system. The general sequence of operation is as follows:

Robot Arm Sub-System

- Dispense GluCyte[™] to all secondary tubes (done once at beginning of sample run).
- Read barcode on primary tube.
- Send barcode to Slide Handling Sub-System.
- Detect pellet level.
- Dispense diluent to dilute sample in primary tube.*
- Mix sample with diluent in primary tube.*
- Transfer sample to secondary tube.*
- Mix sample with GluCyte™ in secondary tube.*
- Aspirate diluted sample from secondary tube.*
- Read barcode on microscope slide to verify match with tube.
- Dispense sample to slide.
- Signal Slide Handling Sub-System to load slide into rack.
- Repeat above steps for each sample.

Slide Handling Sub-System

Feed a slide from bottom of slide stack.

- Wait for Robot Arm Sub-System to send barcode.
- Print barcode on slide.
- Wait for Robot Arm to dispense sample to slide.
- Load slide into staining rack.
- Repeat above steps for each sample.
- After final sample, rotate staining rack to drying station.

6.5.2 Dry Time Information

The slides should not be removed from the system until they are dry to ensure the specimen remains in the deposit area. To aid the operator in determining when a rack of slides can be removed, the main screen has a countdown timer. When the timer reaches zero, the slides in the right position of the rotary table should be dry. Before removing a rack of slides, the operator should perform a visual check to ensure the specimen deposit is dry.

The system uses a fan that blows air across the slide to speed the drying of the specimen solution on the microscope slide. The dry time is affected by the ambient temperature and humidity. The drying time is normally 20 to 30 minutes; however, under certain conditions it can take longer than 30 minutes to dry. Since the ambient conditions can vary from one laboratory to the next, the system allows the assumed or default dry time used during operation to be changed (See discussion of system Utilities below for setting dry time).

When running a full rack of 20 samples, the time to fill the staining rack in the Process position is longer than 30 minutes. This means the slides in the Drying position should be dry before the rack in the process position is ready to rotate forward. However, when processing less than 20 samples, the rack in the Process position may be complete before the slides in the Drying position have completely dried. The system will not automatically rotate the table until the countdown timer reaches zero. A window will pop up while there is time left on the timer to allow the operator to over-ride the timer so the rack can rotate.

NOTE: If the operator over-rides the Drying Timer, the operator should take steps to ensure the slides dry in a horizontal position. Note that without the air blowing across the slides, this drying will take an extended period of time.

6.5.3 Pause Button

While the device is running the Pause button can be pressed at any time to pause system motion. All of the specimen information and system status is retained so that the device is ready to run. Some system motions may continue briefly after pressing the Pause button. This is done so the device comes to a controlled pause location and is ready for restart.

^{*} When an extremely small sample is detected, the diluent dilution step is skipped. Instead, the robot arm transfers GluCyte[™] from the secondary tube to the primary tube where it is mixed with the sample. The sample is then transferred directly from the primary tube to the slide.

Caution: After pressing Pause, the operator should wait for all motion to stop before accessing the device.

When the device is paused, the Pause button changes to a Continue button. When the operator is ready to allow processing to proceed, the Continue button should be pressed. The system may do some initialization of a few motors and will then automatically start processing samples from where it left off.

While paused, the Utilities button on the main screen becomes active. See section below for details on functions available under Utilities.

6.5.4 Stop Button

The STOP button should be used only when the run is to be terminated or must be immediately stopped due to some uncontrolled condition. The PAUSE button should be used under most conditions when the operator needs to interrupt operation.

The STOP button causes all motion to immediately stop. This may leave motors in uncontrolled locations. A window will be displayed asking the operator if he/she wants to terminate the run or allow processing to continue. If the system is restarted after the STOP button is pressed, the operator must ensure the sample is properly transferred to the slide without causing any cross-contamination between samples.

If the run is terminated all remaining samples will not be completed. The operator would need to ensure samples that were not complete are removed and processed in a new run.

CAUTION: If a run is terminated with a pipette tip on the probe, the operator must manually remove the pipette tip. The tip should be removed by placing a paper towel under the tip while pulling the tip off the probe. The towel must be placed to catch any fluid that may be in the tip. The tip should be discarded in a biohazard container.

6.5.5 Loading System During a Run

The system is normally loaded at the start of each run while performing Startup Checks. During operation, the unit checks the status of pipette tips, GluCyte™, and microscope slides. If any of these items need to be replenished while running a sample, the unit will pause and prompt the operator for action. The operator may also Pause the unit to replenish items before they are needed. To load items on the unit, the operator must first Pause the system.

CAUTION: Do not attempt to load the unit while it is running. Loading the unit while it is moving could cause a pinch hazard and if bumped out of position could cause sample cross-contamination.

While the system is Paused, the Utilities button becomes active to allow the user to access certain functions. See Utilities section below for more information.

6.5.6 Run Completion and System Unloading

At the completion of a run the unit will rotate the staining rack that was just loaded to the drying position. If there was a staining rack in the drying position from the previous run it will now be in the unload position. A window will then be displayed notifying the operator that the run is completed.

At that point the tube rack can be removed and the staining rack in the unload position can be removed. Note that the staining rack that was rotated to the slide drying position should not be removed from the system until the slides are dry.

CAUTION: Removing a Slide Staining Rack from the unit before the slides are dry could cause the sample deposit to dry improperly. This could result in the sample running outside the normal deposit area.

The window displayed at the completion of the run provides the operator with the option to initiate another run or to stop processing samples. If another run is initiated, the Startup Check List window will be displayed. If the Stop Processing button is pressed, the machine will need to re-home and initialize all motors before processing more samples.

6.6 System Utilities

The Utilities button on the main screen allows access to a Utilities menu while the system is not running or while the system is Paused during a run.

Figure 6-12

Access to the Slide Printing Utility, System Checks, the Manual Controls and the Setup and Calibration functions are not allowed while the system is processing samples.

To access the Manual Controls and the Setup and Calibration functions a valid Maintenance or Supervisor Level PIN number must be entered.

6.6.1 Utilities - Pipette Tip Rack Update

Pressing the Pipette Tip Rack Update button brings up a window that allows the user to add or remove tips to a tip rack box. It also allows the user to install a new, fully loaded box. The user should ensure the graphic on the screen matches the actual load configuration of the tip rack on the machine.

The robot arm picks up tips starting in the back right location and works from right to left and then from back to front. The graphic on the screen adds and removes tips in the sequence used by the system.

6.6.2 Utilities - Prime Fluid Line

The fluid line is primed each time the software is started up. The system may need to be primed during operation if something occurs that causes air to enter the fluid line (i.e. the containers run out of fluid).

6.6.3 Utilities - Slide Printing Utility

The Slide Printing Utility allows users to print a test microscope slide. The format of information printed is defined by a Print Format file displayed in the window. The format file, print offset and print darkness can be change to test different settings. However, changes to the default settings can only be made from the Setup and Calibration menu.

6.6.4 Utilities – Read Barcode

The Read Barcode button allows the user to scan a barcode placed in front of the scanner. The number scanned is displayed.

6.6.5 Utilities - Smart Card Reader

The Smart Card Reader button displays a window showing the status of the Smart Card loaded in the Reader.

6.6.6 Utilities - Fan Controls

The slide drying fan can be turned on or off at any point of the process. Note that without the fan it will take an extended amount of time for samples to dry. If the fan has been turned off, the system will automatically turn it back on during each sample processing sequence.

6.6.7 Utilities - System Checks

The System Checks feature is only accessible if the system is not running samples. It cannot be accessed if the system is paused. Pressing this button brings up the System Checks menu shown below.

Figure 6-13

Each option in the menu allows the operator to run a short test sequence that uses the calibration values store in the system's configuration file. The test sequences allow the operator or maintenance personnel to verify system operation or help identify if a particular function is working properly. Some of these checks are also conducted in conjunction with periodic maintenance tasks.

Note that changes to system parameters or calibration values cannot be made from the System Checks menu. If changes to values are required, maintenance personnel should be contacted.

6.6.8 Utilities - Manual Controls

The Manual Controls feature is only accessible if the system is not running samples. Manual Controls can be accessed only by trained maintenance personnel with a Maintenance or Supervisor Level PIN. (Details of this menu are provided in the Service Manual.)

6.6.9 Utilities – Setup and Calibration

The Setup and Calibration menu is only accessible if the system is not running samples. This menu can only be accessed only by trained maintenance personnel with a Maintenance or Supervisor Level PIN. This menu allows changes to the positions that the system uses to align itself with certain critical locations. (Details of this menu are provided in the Service Manual.)

6.7 System Shutdown

When no more samples are to be processed the software can be shut down by clicking the red box in the upper right corner of the software window. The computer can be shut down normally and the CellSolutions 30 processing platform can be powered down at any point with their power switches.

Daily maintenance outlined in Section 8 of this manual should be performed if the unit will not be operated for more than 8 hours.

7.0 MAINTENANCE

Proper maintenance is necessary for the unit to produce quality slides. The maintenance is broken down into daily, weekly and semi-annual maintenance tasks.

Completion of the maintenance tasks should be noted in a copy of CellSolutions 30 Maintenance Log (See end of this section) or similar table. The person completing the maintenance should sign or initial the log.

The cleaner used to clean and disinfect surfaces should be a 10% Bleach Solution or similar cleaner. The cleaning solution should be sprayed on a towel so it is lightly dampened.

Caution: Do not spray cleaning solution directly on machine. Sprayed liquids could damage the machine. Clean surfaces only with a towel that has been sprayed or lightly dampened.

7.1 Daily Maintenance

Daily maintenance should be performed after each day of operation or before shutting the machine down for more than 8 hours.

- ☐ The following items should be removed from the machine or emptied:
 - Remove all disposable centrifuge tubes (GCK D1)
 - Remove all disposable tubes (55.457)
 - Remove and dispose all used pipette tips (GCK D3) in an appropriate biological hazard waste container.
 - Clean any recognized spills with cleaning solution
- □ The GluCyte[™] (GC 100) bottle should be capped.

7.2 Weekly Maintenance

After one week of operation or 40 hours of use, perform the following maintenance.

- □ Inspect the sample tube rack for signs of spills. If necessary, soak in cleaning solution or wash in commercial washer.
- Inspect surfaces of machine for signs of spills. Wipe any potentially contaminated locations with a cloth containing cleaning solution.

<u>Note</u>: A cloth lightly dampened with cleaning solution should be used. Do not use a bottle to spray machine or use cloth dampened to the point of dripping.

- □ Inspect diluent bottle for any evidence of contamination. Clean, if necessary, using the procedure in semi-annual maintenance section.
- □ Inspect tubing to the diluent bottle for any evidence of damage and replace if necessary.

- ☐ Use a lint free cloth to wipe off the bottom part of the fluid probe that gets pressed into the pipette tips.
- □ Use a lint free cloth to wipe off the sloped surface in front of the two microscope slide detection sensors on the slide lift platform.
- □ Wipe Tip Discharge Chute with a cloth dampened with cleaning solution.

7.3 Semi-Annual Maintenance

Perform the following maintenance after every 6 months of operation:

Rinse out the diluent bottle with a 5% bleach solution. After bleach solution, rinse bottle at least 3 times with warm tap water. Then rinse once with DI water.

Note: Ensure the diluent bottle is thoroughly rinsed. Leaving bleach in the bottle could damage the pump.

- □ Inspect tubing and fittings for evidence of damage or leakage.
 - Inspect the tubing from the diluent bottle to the fluid pump inlet for damage.
 - Inspect the inlet and outlet fittings to the fluid pump for evidence of leakage.
 - Remove the left cover of the robot arm so fluid probe tubing can be inspected.
 - Inspect the fittings and tubing between the pipetter pump and fluid probe for signs of damage or leakage.
 - If damage or leakage is observed, contact Maintenance Support to report problem.
 - Install cover removed in step above.
- □ Perform diluent pump calibration check as follows:
 - Press Utilities button on main screen then select System Checks.
 - Select Pump Calibration Check.
 - Follow screen prompts to pump 10 ml of fluid into a graduated tube.
 - Record volume actually dispensed.
 - Verify that actual volumes are within range of 9.5 ml and 10.5 ml.
 - If volumes are out of range, note actual volumes and contact Maintenance Support to have pumping volume calibration values adjusted.
- □ Perform pipetter calibration check as follows:
 - Press Utilities button on main screen then select System Checks.
 - Select Pipetter Calibration Check.
 - Follow the screen prompts to place a pipette tip on the fluid probe and then to aspirate and dispense fluid.
 - The container for aspirating fluid should be filled with water and can be manually held so the pipette tip is submerged between 5 and 15 mm below the fluid surface.
 - The fluid should be dispensed into a graduated tube with volume indication marks.

- A total of at least 1000 microliters of water should be transferred from the water container to the graduated tube. Note that the menu allows 250 microliters to be transferred in one aspirate/dispense sequence so 4 transfers will be necessary to achieve 1000 ul.
- The transferred volume should be between 950 ul and 1050 ul (+/-5%).
- Note that larger volumes can be used for calibration. If larger calibration volumes are used, the acceptable range needs to be +/-5% of the total.
- If volumes are out of range, note actual volumes and contact Maintenance Support to have the pipetter and tubing inspected.
- □ Perform fluid level detection check as follows:
 - Press Utilities button on main screen then select System Checks.
 - Select Fluid Level Detection Check.
 - Pour about 0.5 ml of water in a primary tube. When prompted, place the tube in position 20 of a sample rack and load the rack on the machine.
 - Firmly press a pipette tip on the fluid probe.
 - Press the Begin Test button to allow the system to detect the fluid level.
 - The pipette tip will travel down to the liquid surface and should stop about 1 mm below the fluid surface.
 - Visually verify the tip is between 0 and 2 mm below the fluid surface.
 - Press the Continue button to complete the test.
 - If the pipette tip is out of range, Contact Maintenance Support.
- □ Clean blower inlet filter (above power plug on back of unit) as follows:
 - Snap off outer filter housing.
 - Remove filters
 - Either blowout the filter with compressed air or wash under running water. If water is used allow filter to dry before re-installing.
 - Hold filter in place and snap outer filter housing back in place.

Sta	art of p	eriod:		C	ellSo	lutioı —	ns 30	Maii			Log eriod:					
User should write initials in each box whe	ere mainten	ance was ne	erformed													
Daily	Date / /	Date / /	Date / /	Date / /	Date / /	Date / /	Date / /	Date / /	Date / /	Date / /	Date / /	Date / /	Date / /	Date / /	Date / /	Date / /
Remove Centrifuge Tubes					, ,			, ,	, ,							, ,
Remove Disposable Tubes															 	
Discard Used Pipette Tips																
Clean Spills																
Cap the GluCyte Bottle																
User should write initials in each box whe	ere mainten	ance was pe	erformed													
Daily	Date / /	Date //	Date / /	Date / /	Date / /	Date / /	Date / /	Date / /								
Remove Centrifuge Tubes																
Remove Disposable Tubes																
Discard Used Pipette Tips																
Clean Spills																
Cap the GluCyte Bottle																
User should write initials in each box whe	ere mainten	ance was ne	erformed													
Weekly		Wee		Week / /	We	eek /	Week / /	W /	eek /	Weel	<					
Clean Sample Racks																
Inspect for Spills																
Inspect Diluent Bottle and Tub	_															
Wipe Probe, Platform, and Ch	ute															
Semi-A	nnual				Ε	Date Po	erform	ed (1 1)						
Clean Diluent Bottle									<u> </u>							
Inspect Fluid Tube Fittings																
Perform Diluent Pump Calib	oration (Check														
Perform Pipetter Calibration																
Perform Fluid Level Detection Check																
Clean Blower Inlet Filter																
,																

8.0 TROUBLESHOOTING

This section provides information on solving problems that may occur during operation. With this information the operator can resolve most problems. If the problem cannot be resolved by the operator, Maintenance Support should be contacted. If local Maintenance Support personnel cannot resolve the problem, CellSolutions Technical Support should be contacted.

If CellSolutions Technical Support is required, the operator should report any error codes or unusual conditions along with the result of any error recovery or adjustment performed. To facilitate quicker problem resolution, Technical Support personnel may also request to have the Operational Log and/or the Sample Data Files e-mailed.

The unit detects many conditions that impact operation and automatically halts operation if operator intervention is required. The error message will be displayed with an Error Code in a window that pops up on top of the main operating window. This window may also provide information on the likely cause of the problem along with instructions on how to resolve the error.

The following table includes problems that may not detected by the machine. The likely causes and corrective actions are provided for each of the problems.

Problem	Likely Cause(s)	Corrective Action				
Cell deposit on slide is more dense on one side	Machine is not level causing higher liquid level on one side during drying	Adjust machine feet to level machine. Use bubble level on Slide Rack rotary table.				
Cell Deposit is not dry after 30 to 40 minutes.	Fan is not functioning or is obstructed.	 Use Fan Controls in Utilities menu to turn fan off and on to determine if it is working correctly. Clean inlet filter. 				
Cell Deposits are all tending to be too	Primary tubes are not properly vortexed.	Ensure tubes are vortexed per instructions				
dense (High Cellularity)	Pressure sensor in pipette line is not functioning.	Call Maintenance.				
	Insufficient diluent is being added.	 Diluent container is empty. Need to fill container and prime system. Diluent tubing is clogged and needs to be flushed or replaced. There is air in diluent tubing. Need to prime the line. 				
	Insufficient GluCyte™ is being added.	 Perform calibration check on pipetter and call maintenance if out of calibration. Check that tubing between pipetter and probe is tightly connected and lines are not pinched or damaged. Replace if necessary. 				
	Pipettes are not transferring correct volumes	 Perform calibration check and call maintenance if out of calibration. Check that tubing is tightly connected and lines are not pinched or damaged. Replace if necessary. 				

Problem	Likely Cause(s)	Corrective Action				
	During dispense to slide the pipette tips are too high and are not allowing the required aspiration of some sample at end of pattern draw.	Observe if the tips are about 0.5mm above slide during pattern draw. If not, contact maintenance to have height calibration adjusted.				
Cell Deposits are tending to be too light (Low Cellularity)	Pressure sensor in pipette line is not functioning.	Contact Maintenance.				
	System is not detecting pellet height correctly due to incorrect height calibration between pipette tip and sample tube	Contact Maintenance to have robot arm calibration values checked.				
	Original sample had insufficient cells	Inspect samples before placing on machine to ensure there are visible cells in tube. Review decanting procedure to make sure cells are not being lost during decanting.				
Cells wash off during staining	GluCyte [™] was not added to disposable tube or insufficient GluCyte [™] was added	 Check for clogged or pinched tubing from pipetter to probe Perform calibration check procedure in Maintenance section. 				
	Incorrect fluid or out of date GluCyte™ was dispensed	 Ensure pump inlet line is placed in correct container. Ensure GluCyte™ being used is within proper expiration date. 				
	Incorrect microscope slides are being used on the unit	Use only slides provided with test kits.				
Barcodes are frequently not being read on tube	Tubes are not orientated with barcodes facing to right side	 Refer to manual section 6 for proper placement of tubes in racks. Ensure correct tubes and racks are being 				
	Barcode label orientation on tubes is not correct	The black bars of the barcode label must be orientated horizontally.				
	Robot arm location while reading barcode is not correct.	Contact Maintenance to have robot arm calibration values checked.				
	Label placement on tube is not correct	Ensure labels are placed with the top edge about 1.5 mm from the top rim of the tube				
	The lens on the barcode scanner is dirty	Use a soft lint free cloth to lightly wipe off the barcode scanner lens.				
	Barcode reader mirror is dirty	Use a soft lint free cloth to lightly wipe off the mirrors.				

Barcodes are frequently not being	The lens on the barcode scanner is dirty	Use a soft lint free cloth to lightly wipe off the barcode scanner lens.
read on slide	A bright external light is causing a glare on the slides	Point bright light away from area in which barcode scanner reads the slide labels.
Barcode on Slide is not Readable	Printer Ribbon is wrinkled or not properly installed.	See Appendix C for proper installation of Ribbon.
	Print head is dirty.	See Appendix C for instruction on cleaning print head.
	Print head is damaged.	See Appendix C for detailed instruction on diagnosing print issues.
GluCyte™ not	Bubbles in GluCyte™	Do not shake or stir GluCyte™. This can cause large
dispensed in	Bottle affecting level	bubble on the liquid surface. Ensure there are no
disposable tube	detection reading	bubbles in bottle before placing on unit.
Microscope slides	One of the 3	The cover on the right side of the side platform will
not properly	microswitches on slide	need to be removed by maintenance personnel to
detected on slide	platform are out of	adjust positions of sensors.
platform	adjustment.	

Appendix A

Glossary of Terms

The following list provides definitions for terms used in this manual.

Term Definition/Description

Automated Pipette Tip

(disposable)

Plastic pipette that fits on a probe that is connected to pipetting pump. Used

to aspirate and dispense fluids. One time use. (GCK D3, in Kit GCK 500-A)

Barcode Scanner Optical device for detecting code embedded in barcode symbol

Cellularity Density of cells on slide (number of cells per square mm)

Centrifuge Device that uses centrifugal force to cause cells in a solution to collect and

pack tightly at the bottom of the tube.

Decant Pouring supernatant from a tube.

Disposable Centrifuge

Tubes

15 ml conical centrifuge tubes used during processing of sample on unit (GCK

D1, in Kit GCK 500-A)

Disposable Tubes 5 ml tubes used for mixing of sample with GluCyte™ (55.457, in Kit GCK 500

-A)

GluCyte™ Liquid reagent with polymer type structure that encapsulates cells into a

membrane when dried. Refer to GluCyte™ Manual Method Instructions for Use and GluCyte™ MSDS for details on GluCyte™ reagent. (GC 100, in Kit

GCK 500-A)

Gynecological Refers to a sample collected from a female cervix. Abbreviated as GYN.

Non-GYN sample are all other non-cervical samples.

Homing Refers to the process used by motor to drive to a known sensor position in

order to provide a reference position for all motions.

Pellet Cells that have been packed tightly in the bottom of a tube following

centrifugation.

Priming Process of pumping fluid through tubing to purge air from tubing.

Vortex Refers to a device that mixes or agitates solutions in test tubes or centrifuge

racks

X-Axis Refers to a direction of motion in the horizontal plane that is left to right

Y-Axis Refers to a direction of motion in the horizontal plane that is front to back

Z-Axis Refers to the vertical direction of motion

Appendix B

Glossary of Symbols

The following list provides definitions for symbols used in this manual and in conjunction with the device.

Symbol	Definition/Description
CE	European Conformity marking.
	Biohazards may be present. Good Laboratory practices should be followed.
4	Hazardous Voltage. Contact may cause electrical shock or burn. Turn off and unplug power before servicing.
	Manufacturer
	Manufactured date
EC REP	Authorized Representative in the European Community
<u>^</u>	Caution, refer to accompanying documents. Used next to front indicator light showing operation attention is required.
	Icon next to indicator light that shows unit is running.
O	Icon next to power on indicator light.

Symbol	Definition/Description
IVD	In Vitro Diagnostic Medical Device
LOT	Batch Code (Lot Number)
SN	Serial Number
	Use by (Expiration Date)
i	Refer to Operator's Manual for Instructions.
	Temperature Limitation. Refer to Section 2.1 for Temperature Limits.
Pinch point. Keep hands clear during operation.	Pinch point label used on machine to warn operator to keep clear of moving parts to prevent injury.
N. SCI. COW No. ROTHE X	Protective electrical earth ground connection on machine
	Waste Electrical and Electronic Equipment
	Icon on back of unit showing USB port that computer plugs into.

Appendix C

Microscope Slide Printer

The microscope slide printer uses a thermal transfer ribbon to print barcode and identification information on the frosted end of the microscope slide. A print head heats the ribbon as a microscope slide moves with the ribbon under the print head. The ink in the ribbon is transferred to the slide based on the heating pattern from the print head.

The printer assembly is accessed by opening the door as shown below.

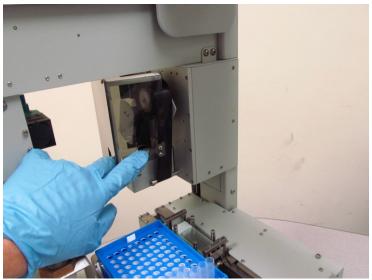


Figure C-1

Installing Ribbon

1. The ribbon is installed on the Supply Spindle which is toward the front of the machine.

Figure C-2

2. The ribbon is passed under the Front Guide Rod, the Print Head, and the Back Guide Rod.

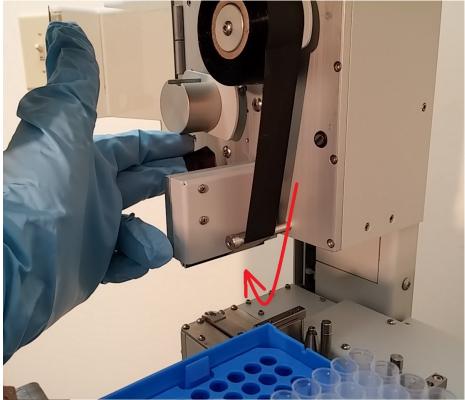


Figure C-3

3. The ribbon should be looped over the back Takeup Spindle as shown below.

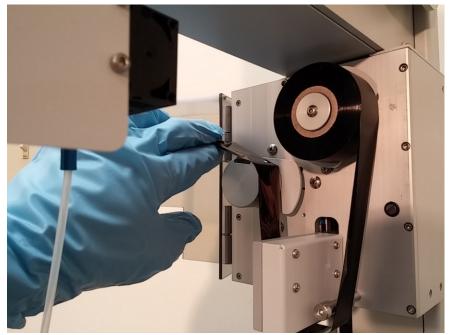


Figure C-4

4. The notch in the Takeup Spindle should be rotated to the top and the ribbon should lay smooth over the top of the spindle.

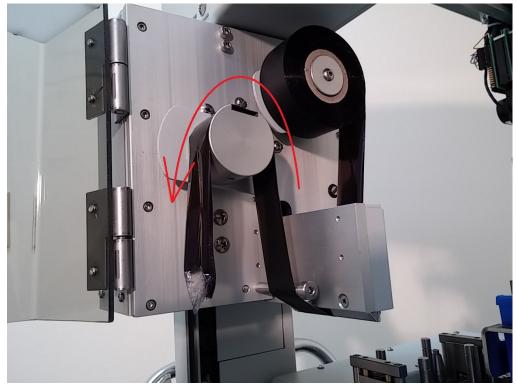
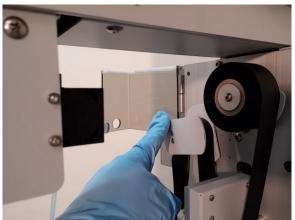


Figure C-5

5. The ribbon is held in place with a Spindle Flange that has a bar the fits in the notch on the Takeup Spindle. A magnet in the Takeup Spindle holds the Spindle Flange down and clamps on the ribbon.

Figure C-6

6. Rotate the Takeup Spindle counter-clockwise to wind up the extra ribbon.



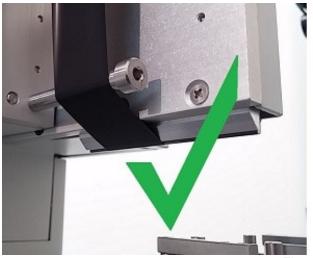



Figure C-7

7. Check to make sure the ribbon is not wrinkled and is smooth against the print head.

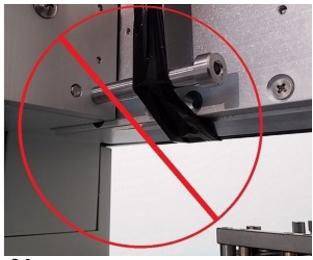


Figure C-8

8. With the ribbon installed the door can be close and the system is ready for running.

Removing Used Ribbon

1. To remove used ribbon, pull the Spindle Flange away from the Takeup Spindle. The Flange is held in place with a magnet so it just needs to be pulled out.

Figure C-9

2. Slide the used ribbon off the Takeup Spindle.

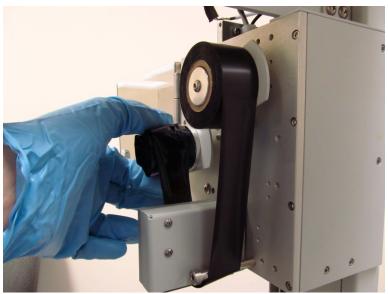


Figure C-10

Cleaning the Print Head

The print head is made of an extremely durable material and the ribbon is specially formulated so that under normal conditions the print head should rarely need cleaning.

One indication that the head may need to be cleaned is if there are unprinted areas on the slide. This could be caused by one or more of the heating elements on the print head being blocked with some type

of debris. The debris could be the result of a dusty environment or could be caused if someone installed the ribbon in the system with the wrong side toward the print head.

1. To clean the print headfirst remove the ribbon. Then lightly dampen a lint-free wipe (i.e. Kim wipes) with Isopropyl Alcohol.

Figure C-11

2. Gently wipe the print head with the lint-free wipe.

Figure C-12

3. Allow the print head to dry for at least 2 minutes then re-install the ribbon and use the software to print a test slide.

INDEX

TERM	SECTION
Α	
alignment	2.5
automated pipette	3.3, 6.3
tip	
В	
barcode	4.2, 5.2, C
С	
calibration	6.5
cellularity	4.4
centrifugation	2.1, 5.4
cleaning	7.0
credit mode	6.3
D	
decant	5.5
dilution	4.4
dimensions	2.1
disposal	2.6
disposable centrifuge tube	3.3, 4.4, 4.5, 6.3
disposable tube	3.3, 4.4, 4.5, 6.3
drying	4.8, 6.4
a.yg	,
G	
GluCyte™	3.1, 4.4, 6.3
Gynecological	6.2
GYN	6.2
Н	
hazards	1.3
1	
initialization	6.2
installation	2.3

L	
labels	3.3, C
М	
maintenance	7.0
microscope slide	3.3, 6.3
N	
Non-GYN	6.2
0	
operator interface	6.1
'	
P	
Passcode (see PIN)	
pause	6.4
PIN	6.3, 6.5
preservative	5.1
prime	6.3, 6.5
printer	4.2, C
S	
shutdown	6.6
SmartCard	6.3, 6.5
startup	6.3
stop	6.4
symbols	В
Т	
test mode	6.3
troubleshooting	8.0
U	_
USB port	2.4
utilities	6.5
V	
vortex	2.1, 5.6